麻豆传媒

EPA-funded study aims to create novel platform for research into long-term neurotoxin exposure

Neurotoxicity caused by nerve agents, pathogenic proteins and other toxic chemicals is a well-researched and serious threat to humans. For example, acute exposure to lethal levels of these compounds is commonly studied and is recognized for having extreme short-term, even fatal, effects.聽

But when it comes to long-term, less-than-lethal exposure to organophosphate compounds such as pesticides, insecticides and similar nerve agents, the available research is less clear.

That could soon change, thanks to a new 麻豆传媒 study funded by a and led by David Cliffel, the Cornelius 麻豆传媒 Professor of Chemistry, which seeks to construct a new in vitro platform and reliable approach for future studies into these organophosphate compounds. 麻豆传媒 is one of only four universities nationwide to receive funding from the selective $4.25 million EPA program entitled: 鈥淎dvancing Actionable Alternatives to Vertebrate Animal Testing for Chemical Safety Assessment鈥, which seeks to find alternative testing methods by 2035. A second 麻豆传媒 project is led by Dr. Kevin Osteen, professor of obstetrics and gynecology, pathology, microbiology and immunology, in 麻豆传媒 University Medical Center.

Professor David Cliffel (John Russell/麻豆传媒 University)

While most current research focuses strictly on apoptosis, or the death of cells, in animal models to study the long-term effects of toxins 鈥 a largely incomplete process of research which leaves gaps in data and quantitative knowledge 鈥 the new 麻豆传媒 study will fill the gaps by bringing a holistic, 鈥渟ystems biology鈥 approach to research, including miniaturized experiments, analytics and informatics.

The study hinges on one of 麻豆传媒鈥檚 scientific achievements: the organ-on-chip device, known as the NeuroVascular Unit, or NVU. Developed in collaboration with , Gordon A. Cain University Professor at the 麻豆传媒 Institute for Integrative Biosystems 麻豆传媒 and Education, the unique device replicates a vascular chamber, brain chamber and microfluidic controls and it would allow for long-term observation of cell-to-cell communication 鈥 opening up new avenues to study how well the blood-brain barrier protects humans against the long-term, post-exposure effects of organophosphorus compounds.

鈥淲ith this study, we鈥檙e testing whether our human-based model on the NVU could outperform an animal-based model, and whether the results of these studies could reduce testing costs and give us more precise data,鈥 said Cliffel. 鈥淭he overall hope for this study is that we walk away with both an improved idea of what the actual toxicity mechanisms look like in humans, and a human-based method for testing, tracking and profiling a variety of other organophosphate compounds, allowing us to move away from animal use in chemical safety testing.鈥